

ДЕФОРМАТИВНОСТЬ МЕТАЛЛОДЕРЕВЯННОЙ ФЕРМЫ С ЭЛЕМЕНТАМИ ИЗ ЦЕЛЬНОЙ ДРЕВЕСИНЫ, УСИЛЕННЫМИ СТАЛЬНЫМИ ТОНКОСТЕННЫМИ ПРОФИЛЯМИ

Гаврилов Вадим Борисович

ФГБОУ ВО «Магнитогорский государственный технический университет им. Г.И. Носова», г.Магнитогорск, доцент

Варламов Андрей Аркадьевич

Профессор ФГБОУ ВО «Магнитогорский государственный технический университет им. Г.И. Носова», г.Магнитогорск, кандидат технических наук, доцент

Шишлонов Евгений Александрович

Генеральный директор ООО «ТехноГарант», г.Магнитогорск

Сахипов Марат Сагитович

Ведущий эксперт отдела безопасности зданий и сооружений ООО «ТехноГарант», г. Магнитогорск

Ткач Евгений Николаевич

Эксперт отдела безопасности зданий и сооружений ООО «ТехноГарант», г.Магнитогорск

Шумилин Максим Сергеевич

Эксперт отдела безопасности зданий и сооружений ООО «ТехноГарант», г.Магнитогорск

Дмитрий Алексеевич Афанасьев

Эксперт отдела экспертизы промышленной безопасности ООО «ТехноГарант», г.Магнитогорск

Испытание металлодеревянной фермы в лаборатории института Архитектуры, строительства и искусств ФГБОУ ВО «Магнитогорский государственный технический университет им. Г.И. Носова» проводятся как на полномасштабных конструкциях пролетом 6,0 м, так и на отдельных элементах из древесины прямоугольного сечения, усиленных с трех сторон стальными тонкостенными листами. Основной идеей данных экспериментов является получение надежной конструкции с большой несущей способностью и возможностью изготовления ее непосредственно на строительной площадке. Последнее обстоятельство позволяет существенно снизить себестоимость конструкции, так как достаточно лишь одного специализированного помещения на строительной площадке вместо целого цикла зданий и сооружений (помещений), предусмотренных заводскими условиями изготовления. Исключается также процесс транспортировки конструкций.

В проводимых экспериментах усиление древесины заключается в приклеивании стальных листов к боковым граням по всей длине элементов. Согласно СП63.13330-2011 для приклеивания стальных элементов и деталей к древесине необходимо применять эпоксидные составы. Использование эпоксидного клея в соединении стальных листов с древесиной требует меньших нормативных ограничений при производстве работ и получении качественных клеевых швов.

В процессе подготовки плана экспериментальных исследований была предложена конструкция фермы с параллельными поясами, в которой все деревянные элементы (стержни) с трех сторон обклеиваются тонким стальным П-образным профилем. Подобный профиль используется в отделочных работах и имеется в свободной продаже. Для экспериментов было использовано два наиболее распространенных профиля $40\times100\times0,45$ мм и $40\times100\times0,6$ мм. Конструкция фермы представлена на рис. 1. Стальным профилем толщиной 0,6 мм усилены опорные раскосы и пояса, так как в них возникают наибольшие напряжения.

Сечение всех элементов фермы прямоугольное 40×98 мм. Древесина – сосна первого и второго сорта.

Узлы сопряжения элементов выполнены с применением стальных накладок толщиной 3 мм. Соединение элементов фермы с пластинами выполнено при помощи стальных шпилек диаметром 10 мм. Стойки и наименее напряженные раскосы были закреплены при помощи одной шпильки в каждом узле сопряжения. Опорные раскосы и элементы поясов были закреплены на две шпильки в каждом узле сопряжения с пластинами.

Нагружение фермы осуществлялось в узлы, причем верхний пояс был раскреплен в каждом узле для предотвращения потери общей устойчивости фермы из плоскости (рис. 2). Для контроля общей деформации фермы к центральному узлу нижнего пояса был закреплен фиксатор прогибомера.

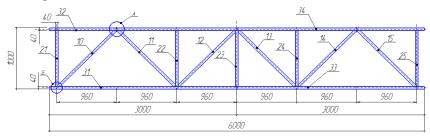


Рис.1. Геометрическая схема металлодеревянной фермы

www.pamag.ru www.pamag.ru www.pamag.ru



Рис. 2. Приложение нагрузки в узлы верхнего и нижнего поясов

Нагрузка прикладывалась ступенчато по 100 кг в каждый узел. До достижения нагрузки 500 кг в каждый узел фермы ферма периодически разгружалась, фиксировались остаточные деформации, а затем вновь происходило нагружение, но уже с нагрузкой увеличенной на 100 кг для каждого узла. Результаты зафиксированных прогибов фермы приведены на рис. 3. Затем разгружение не выполнялось, а при достижении нагрузки в 800 кг в каждый узел, шаг увеличения нагрузки был снижен до 50 кг.

Разрушение фермы наступило при нагрузке в 950 кг (в каждый узел фермы) вследствие разрушения древесины опорного раскоса и элемента сжатого пояса. Первоначально произошло отслоение металлических пластин (тонкостенного профиля) от древесины, т.е. разрушение клеевых швов. Затем в местах дефектов в древесине стали появляться трещины и расслоения между волокнами.

Для сравнения полученного графика деформаций фермы с теоретическим был выполнен расчет фермы с учетом приведенных (по модулю упругости) геометрических характеристик элементов. За основной элемент была принята древесина, так как ее объем в сечении существенно больший по сравнению с тонкостенным профилем.

Дополнительно был выполнен теоретический расчет аналогичной фермы из цельнодеревянных элементов, сечением 40×100 мм и расчет аналогичной по несущей способности стальной фермы. В стальной ферме приняты парные уголки с минимальным рекомендуемым сечением уголков для подобных конструкций 50×5 мм. Расчет выполнялся с применени-

www.pamag.ru www.pamag.ru

ем программного комплекса ЛИРА. В результате расчетов были получены предельные узловые нагрузки для деревянной и металлической ферм, которые отображены на графиках (рис. 4). Для каждой условной ступени загружения был рассчитан прогиб фермы (вертикальные деформации центрального узла).

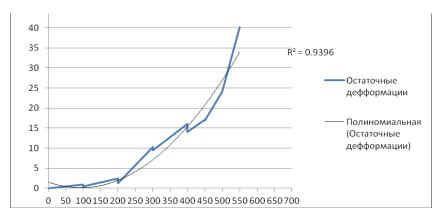


Рис. 3. Прогиб центрального узла с учетом остаточных деформаций

Рис. 4. Прогибы во всех видах ферм с учетом практических данных (деформации в мм, нагрузка в кг в каждый узел фермы)

www.pamag.ru www.pamag.ru

Установлено, что деформации фермы (общий прогиб) существенно ниже деформаций фермы из цельной древесины, что определено теоретическим расчетом, и уступают стальной ферме с близкой несущей способностью. Теоретический расчет экспериментальной фермы с приведенными геометрическими характеристиками показал близкое совпадение с экспериментальными данными. Однако первоначально деформации были ниже теоретических, что обусловлено более жестким сопряжением элементов в узлах, в которых первоначально поверхности были склеены эпоксидным клеем.

После разрушения клеевых швов в узлах (при нагрузке 300-400 кг в каждый узел) сопряжения элементов фермы между собой становятся практически шарнирными, деформации в этом случае нарастают более интенсивно.

Деформативность предлагаемой конструкции в 2,5 раза ниже по сравнению с аналогичной деревянной фермой. Несущая способность выше примерно в 3 раза по сравнению с деревянной фермой и на 30% ниже несущей способности стальной фермы из парных прокатных уголков (50×5 мм).

На основании проведенных испытаний можно сделать общий вывод о том, что стальные тонкостенные профили безусловно способствуют увеличению несущей способности элементов. Предполагается, что металлические листы способствуют более равномерной работе древесины, содержащей множественные пороки. Пороки в древесине, как правило, имеются даже в 1-ом сорте. Несмотря на очевидность полученных результатов, эксперименты необходимо повторять вновь, использую другие толщины листов, проводя сравнительный анализ стоимости данных конструкций, и переходя на длительные испытания.

Известно, что при проектировании металлодеревянных конструкций необходимо учитывать перераспределение усилий между металлом и древесиной [6], которое происходит в процессе эксплуатации вследствие изменения физико-механических свойств древесины (ползучести) и возникающих дополнительных сдвигающих усилий в зоне соединения металла с древесиной при постоянных и длительных нагрузках.

Иными словами с течением времени происходит разгружение более "слабого" и неоднородного материала — древесины и догружение более прочного и однородного материала — металла. Для более надежного проектирования металлодеревянных конструкций необходимо повторить аналогичные испытания, но уже с учетом длительных загружений в течение двух лет.

www.pamag.ru www.pamag.ru

Библиографический список

- 1. Лукин М.В. Совершенствование конструкций и технологий производства деревоклееных композитных балок, Автореферат на соискание ученой степени канд. техн. наук. Архангельск, 2010. 16 с.
- 2. Гаврилов В.Б., Емельянов О.В. Исследование прочности древесины и усиление несущих конструкций деревянного покрытия здания старой постройки в г. Троицк // Архитектура. Строительство. Образование. 2014.— №1 (3). С. 178-182.
- 3. Варламов А.А. К оценке долговечности зданий и конструкций // Актуальные проблемы современной науки, техники и образования: материалы 71-й межрегиональной научно-технической конференции. Магнитогорск: Изд-во Магнитогорск. гос. техн. ун-та им. Г.И. Носова, 2013. Т.2. С. 186-188.
- 4. Емельянов О.В., Емельянова О.О. Подходы к моделированию процесса нагружения при прогнозировании срока службы металлических конструкций // Архитектура. Строительство. Образование. 2014. № 1 (3). С. 190-195.
- Тойбаев С.Н., Дюсембаев И.Н. Математическое моделирование динамического изгиба балки на стержневом основании с учетом упругопластического деформированного основания при действии сосредоточенной силы // Архитектура. Строительство. Образование. 2015. №1 (5). С. 64-69.
- 6. Щуко В.Ю., Рощина С.И. Клееные армированные деревянные конструкции: Учебное пособие. Владимир: Владимирский государственный университет, 2007. 68 с.

www.pamag.ru www.pamag.ru www.pamag.ru