СОВЕРШЕНСТВОВАНИЕ РЕГИОНАЛЬНОГО НАДЗОРА ЗА БЕЗОПАСНОСТЬЮ ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ С НАПОРНЫМ ФРОНТОМ

УДК 627.8.624.046.5

Волосухин Виктор Алексеевич

Директор Института безопасности гидротехнических сооружений, г.Новочеркасск, Ростовская область, доктор технических наук, профессор

Дерновой Владимир Михайлович

Заместитель руководителя Верхне-Донского управления Ростехнадзора, г.Воронеж

Первые водохранилища на Земле появились в третьем тысячелетии до нашей эры [1]. К числу первых водохранилищ в России, введенных в эксплуатацию в 1704 г., относят Алапаевское, построенное на реке Нейва (бассейн Оби), с полным объемом 7,4 млн.м³, полезным 5,1 млн.м³ и площадью зеркала при НПУ 240 га. К началу XX века в России было уже 46 водохранилищ с полным объемом более 1 млн.м³.

В начале XXI века мировая база данных включает более ста тысяч подпорных гидротехнических сооружений, в том числе тридцать шесть тысяч больших плотин (H>15 м).

В соответствии с пунктом 177 ГОСТ 19179-73 «Гидрология суши. Термины и определения» [2] под водохранилищем понимается искусственный водоем, образованный водоподпорным сооружением на водостоке с целью хранения воды и регулирования стока. В состав гидротехнического комплекса водохранилища, как правило, входят плотина (грунтовая, каменная, каменно-земляная, бетонная и т.д.), водосбросы, водоспуски, водозаборы.

На территории Российской Федерации в настоящее время в эксплуатации находятся 2650 водохранилищ емкостью свыше 1 млн.м³. Полезный объем водохранилищ России составляет 341,76 км³, полный 811,87 км³, площадь зеркала при полном объеме – 69,77 тыс.км². Из эксплуатируемых в России водохранилищ 86% имеют объем от 1 до 10 млн.м³, вместе с тем более 90% суммарного полезного объема имеют водохранилища емкостью свыше 10 млн.м³.

Интересен анализ опыта разрушения грунтовых плотин в США. Разрушившаяся в 1972 г. после 34 лет эксплуатации грунтовая плотина высотой 6 м из-за перелива воды принесла прямой ущерб в 60 млн. долларов, при этом погибло 237 человек. Разрушившаяся в 1982 г. после 80 лет эксплуатации грунтовая плотина высотой 8 м из-за ошибок служб эксплуатации принесла прямой ущерб в 20 млн. долларов, при этом погибло 3 человека. Во все учебники ГТС вошла авария строящейся грунтовой плотины Теton высотой 92 м, произошедшая из-за ошибок в проекте. Эта трагедия принесла прямой ущерб в 1 млрд. долларов и унесла

жизни 11 человек. Среднегодовая частота разрушений грунтовых плотин $(2,5-5)\cdot 10^{-4}$, в России этот показатель в 2,5-3,0 раза выше.

К прудам принято относить искусственные водоемы, которые создаются в бассейнах рек и имеют объем до 1 млн.м³. В бассейне реки Дон (годовой среднемноголетний сток – 26,8 км³, весенний сток до зарегулирования составлял 60%, ныне – менее 29%) эксплуатируется 746 водохранилищ объемом более 1 млн.м³ с суммарным полезным объемом 14,94 км³, полным объемом 31,17 км³ и площадью зеркала при полном объеме 4,89 тыс.км².

В бассейне реки Дон насчитывается более 10 тыс. прудов с суммарным полезным объемом $1,9~{\rm km}^3$, полным объемом $2,1~{\rm km}^3$, площадью зеркала при полном объеме $853~{\rm km}^2$. Большинство из них создано в 60-70 годы XX века и используется для сельскохозяйственного водоснабжения, орошения, рыборазведения и рекреации.

Опыту отраслевого надзора за безопасностью ГТС в России более 35 лет, и впервые он был введен для ГТС энергетики с разработкой Союзтехэнерго «Временного положения о надзоре за безопасностью гидротехнических сооружений электростанций» [3].

Под надзор было поставлено в СССР свыше 400 гидроузлов, обеспечивающих работу 216 ГЭС, 4 ГАЭС, 35 ТЭЦ, 72 ГРЭС и 9 АЭС.

Поднадзорными считались те ГТС, которые образуют водохранилища емкостью более $1\,\mathrm{mnh.m}^3$ или имеют напор воды более $10\,\mathrm{m}$, а также, независимо от параметров ГТС, ГЭС мощностью более $5\,\mathrm{thc.\,kBt}$, ТЭС и АЭС мощностью более $100\,\mathrm{thc.\,kBt}$.

С введением Федерального закона № 117-ФЗ «О безопасности гидротехнических сооружений» [4] был расширен перечень поднадзорных ГТС (гидротехнические сооружения — плотины, здания гидроэлектростанций, водосбросные, водоспускные и водовыпускные сооружения, туннели, каналы, насосные станции, судоходные шлюзы, судоподъемники; сооружения, предназначенные для защиты от наводнений, разрушений берегов и дна водохранилищ, рек; сооружения (дамбы), ограждающие хранилища жидких отходов промышленных и сельскохозяйственных организаций; устройства от размывов на каналах, а также другие сооружения, предназначенные для использования водных ресурсов и предотвращения негативного воздействия вод и жидких отходов), что сформулировано в статье 3 закона. МПР РФ приказом от 02.03.1999 г. № 39 констатировало, что подлежат декларированию безопасности ГТС IV класса капитальности при напоре на сооружении более 3 м и объемах водохранилища более 0,5 млн.м³ [5].

С выходом постановления Правительства РФ от 29 мая 2008 г. № 404 «О Министерстве природных ресурсов и экологии Российской Федерации» ГТС, поднадзорные Росприроднадзору, были переданы Ростехнадзору.

Предотвращение аварий зданий и сооружений

В табл.1-3 представлены особенности зоны надзора за безопасностью Γ TC Верхне-Донского управления Ростехнадзора.

Из табл.2 следует, что коэффициент изменчивости местного стока в Воронежской области наиболее высокий в Центральном федеральном округе, т.е. здесь наиболее часто чередуются как маловодные, так и многоводные годы. Зона надзора Верхне-Донского управления Ростехнадзора характерна высокой нагрузкой на местные водные ресурсы (до 40% в Воронежской области), что потребовало строительства только в этой области во второй половине XX века более 2235 ГТС с напорным фронтом.

Таблица 1 Зона надзора за безопасностью гидротехнических сооружений Верхне-Донского управления Ростехнадзора

Субъект Российской Федера- ции	Площадь территории, тыс.км ²	Процент от итого	Население, млн. чел	Процент от итого
1. Воронежская область	52,4	31,1	2,33	31,6
2. Тамбовская область	34,3	20,5	1,14	15,5
3. Курская область	29,8	17,8	1,20	16,3
4. Белгородская область	27,1	16,2	1,51	20,5
5. Липецкая область	24,1	14,4	1,19	16,1
Итого	167,7	100	7,37	100

Таблица 2 Средние многолетние естественные ресурсы местного стока в зоне надзора Верхне-Донского управления Ростехнадзора

Субъект Российской Федерации	Местн	ый сток	Процент	C_{v}	
Субъект госсийской Федерации	км ³ /год	MM	от итого	$C_{\rm v}$	
1. Воронежская область	3,30	63,0	21,1	0,58	
2. Тамбовская область	3,67	107	23,4	0,32	
3. Курская область	3,60	121	23,0	0,28	
4. Белгородская область	2,51	92,6	16,0	0,32	
5. Липецкая область	2,59	107	16,5	0,27	
Итого по зоне	15,67	93,4	100	-	
Центральный Федеральный округ	108	166	-	0,20	
Российская федерация	4118	241	-	0,06	

Таблица 3 Нагрузка на водные ресурсы в зоне надзора Верхне-Донского управления Ростехнадзора

Субъект Российской Федерации	Местные водные ресурсы, км ³ /год		Водопотребление, км ³ /год (2005 г.)		Нагрузка на местные водные ресурсы, %		Водообеспечен- ность, тыс.м ³ /год на чел.	
	средние мно- голетние	средние за маловодный период	полное	безвозврат- ное	на средние многолетние	за маловод- ный период	при средне- многолетнем годе	водными ре- сурсами в маловодный период
1. Воро- нежская область	3,30	1,40	0,56	0,19	17,0	40,0	1,33	0,52
2. Тамбо- вская об- ласть	3,67	2,20	0,19	0,11	5,18	8,64	3,12	1,83
3. Кур-ская область	3,60	2,10	0,32	0,18	8,89	15,2	2,85	1,60
4. Белгородская область	2,51	1,50	0,31	0,14	12,4	20,7	1,57	0,90
5. Липец- кая область	2,59	1,40	0,25	0,08	9,65	17,9	2,11	1,11
Итого по зоне	15,67	8,60	1,63	0,70	10,4	19,0	2,13	1,16

В табл.4 представлены ГТС в зоне надзора Верхне-Донского управления Ростехнадзора по данным Российского регистра ГТС [6]. Нынешняя их структура следующая: ГТС энергетики – 3 (0,3%), ГТС промышленности – 57 (4,9%), ГТС агропроизводителей (орошение, сельскохозяйственное водоснабжение, рыборазведение, рекреация) – 1092 (94,8%). Следует отметить, что количество ГТС последнего класса значительно занижено, так как инвентаризация потенциально опасных ГТС в Воронежской, Тамбовской, Курской, Белгородской и Липецкой областях незавершенна из-за недостатка финансовых средств у эксплуатационных организаций.

Уровень безопасности ГТС в зоне надзора Верхне-Донского управления Ростехнадзора должен вызвать обеспокоенность администрации субъектов РФ, собственников. Например, в Воронежской области по данным Российского регистра ГТС [6] из базы данных по 306 ГТС нормальный уровень безопасности имеют всего 7,5%, пониженный – 58,8%, неудовлетворительный – 19%, опасный – 14,7%.

Таблица 4 Количество ГТС по отраслям экономики в зоне надзора Верхне-Донского управления Ростехнадзора (по данным Российского регистра ГТС – 2008 г.)

Субъект Российской Федерации	ГТС энерге- тики	ГТС промыш- ленности	ГТС, до 29.05.2008 г. под- надзорные Роспри- роднадзору
1. Воронежская область	1	13	118
2. Тамбовская область	_	7	464
3. Курская область	2	8	197
4. Белгородская область	-	14	122
5. Липецкая область	-	15	191
Итого	3	57	1092
В целом по Российской Федерации	313	751	3266

Согласно СНиП 33-01-2003 «Гидротехнические сооружения. Основные положения» [8], срок службы основных ГТС для сооружений IV класса составляет 50 лет. СНиП 33-01-2003 установил, что допустимое значение аварии для напорных ГТС I класса – $R=5\cdot10^{-5}$, для II класса – $R=5\cdot10^{-4}$, для III класса – $R=3\cdot10^{-3}$. Количественные значения для напорных ГТС IV класса не установлены. Выборочные данные по земляным плотинам IV класса из грунтовых материалов в бассейне Дона позволяют выделить четыре этапа их жизненного цикла: строительство – 1-2 года, наполнение водохранилища и первые годы эксплуатации – 3-5 лет, «нормальные» условия эксплуатации – 20-24 года, «старение» сооружения – 22-26 лет. Для этапа «старения» земляных плотин IV класса характерны забивка дренажных устройств, фильтров, рост эрозии, суффозии, снижение устойчивости верховых и низовых откосов, значительное снижение ресурса водосбросных, водоспускных, водозаборных сооружений и металлоконструкций.

В этом отражается реальная специфика рыночной экономики России конца XX и начала XXI века, когда на профилактический, аварийный, капитальный ремонты выделяются средства в размере от 10 до 20% от минимально потребных сумм, квалификация эксплуатационного персонала, как правило, является низкой, предаттестационную подготовку по безопасности ГТС и аттестацию в межтерриториальных управлениях Ростехнадзора проходят единицы руководящих работников и специалистов.

Дальнейшему совершенствованию надзора за безопасностью ГТС послужат вносимые поправки в статьи 13 и 14 Федерального закона № 117-ФЗ «О безопасности гидротехнических сооружений», находящиеся на рассмотрении в Государственной Думе РФ [9].

Предотвращение аварий зданий и сооружений

Для зоны надзора за безопасностью ГТС Верхне-Донского управления Ростехнадзора характерна эксплуатация ГТС IV класса, где, как правило, постоянная служба эксплуатации отсутствует. Пруды и водохранилища на малых и средних реках находятся, как правило, в каскаде, что увеличивает риск аварий ГТС. На водосбросах прудов и водохранилищ произошли очень существенные изменения по отношению к периоду проектирования и строительства, поэтому следует пересмотреть основные гидрологические характеристики антропогенно освоенных бассейнов: расход воды, объем стока воды, модуль и слой воды, а также расчетные максимальные расходы воды для основного (Р=5% для ГТС IV класса) и поверочного (P=1%) расчетных случаев. Работа, проведенная надзорными органами и эксплуатационными организациями в 2009 г., позволяет ожидать на конец года декларирования 52 ГТС IV класса, в том числе по Воронежской области – 33, Липецкой – 9, Тамбовской – 6. Белгородской – 4. В план декларирования на 2010 г. ожидается включение до 50 ГТС.

Для повышения эффективности надзора за безопасностью ГТС в зоне надзора Верхне-Донского управления Ростехнадзора необходимы:

- сбор достоверной информации о состоянии эксплуатирующихся ГТС посредством инвентаризации за счет средств субъектов РФ и создания в каждом субъекте региональной программы обеспечения безопасности ГТС на 2010-2011 гг.;
- повышение обоснованности капитального ремонта для ГТС, уровень безопасности которых является неудовлетворительным и опасным, и профилактического и аварийного (внепланового) для ГТС, уровень безопасности которых является пониженным;
- проведение мониторинговых исследований для ГТС IV класса, уровень безопасности которых является пониженным и неудовлетворительным;
- реализация предатестационной подготовки руководящих работников и специалистов эксплуатационных организаций ГТС с последующей аттестацией в Верхне-Донском управлении Ростехнадзора.

Выволы

- 1. Наличие значительного количества стареющих низконапорных ГТС IV класса в зоне надзора Верхне-Донского управления Ростехнадзора требует более четкой организации комплексного контроля за их состоянием.
- 2. Система надзора за безопасностью ГТС на региональном уровне должна носить государственный характер и приближаться к международным стандартам.
- 3. К первоочередным мероприятиям по повышению уровня безопасности ГТС в зоне надзора Верхне-Донского управления Ростехнадзо-

Предотвращение аварий зданий и сооружений

ра следует отнести инвентаризацию потенциально опасных ГТС в каждой области, создание региональных программ безопасности ГТС в каждом субъекте РФ, обучение и аттестацию эксплуатационного персонала, выделение средств — федеральных, областных, муниципальных для проведения капитальных, аварийных, профилактических ремонтов ГТС.

Библиографический список

- 1. Авакян А.Б. Водохранилища / А.В. Авакян, В.П. Салтанкин, В.А. Шаранов. М.: Мысль, 1987. 326 с.
- 2. ГОСТ 19179-73. Гидрология суши. Термины и определения. М.: Изд-во стандартов, 1988. 34 с.
- 3. Серков В.С. Временное положение о надзоре за безопасностью гидротехнических сооружений электростанций // Гидротехническое строительство, 1973, № 9.
- 4. Федеральный закон № 117-ФЗ от 21.06.1997 г. «О безопасности гидротехнических сооружений» (в ред. Федерального закона № 309-ФЗ от 30.12.2008 г.).
- 5. Сборник нормативно-методических документов, применяемых при декларировании безопасности гидротехнических сооружений/ В.А. Волосухин, О.Е. Ожиганов, А.В. Хныкин, С.П. Земцев, Я.В. Волосухин; Под общ. ред. В.А. Волосухина: Академия безопасности ГТС, Институт безопасности ГТС. Новочеркасск: Лик, 2009. 1172 с.
- 6. Российский регистр гидротехнических сооружений 2008: Справочное издание. М.: Росводресурсы, 2008. 482 с.
- 7. Гогоберидзе М.И. Риск повреждения и разрушения грунтовых плотин / М.И. Гогоберидзе, Ю.Н. Макашвили, Г.А. Беручашвили, М.Э. Гвилия // Гидротехническое строительство, 1984, № 4, с. 35-37.
- 8. СНиП 33-01-2003. Гидротехнические сооружения. Основные положения. М.: Госстрой России, 2004. 24 с.
- 9. Проект № 243819-5 ФЗ «О внесении изменений в отдельные законодательные акты РФ».